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Abstract The dipolar nuclear magnetic relaxation rate associated with the hopping diffusion 
of atoms in a disordered solid is calculated by Monte Carlo methods. The model is intended to 
simulate the diffusion of hydrogen atoms trapped at interstitial positions in the matrix of meld 
atoms in amorphous alloys. The principal feotum of the model system are that the atom hop 
on a spatially disordered array of traps and the trapping energy varies from trap to trap so that 
the diffusion of the hydrogen is characterized by a dismibution of jump rates. The effective 
jump rate from a trap is assumed to have an Arrhenius dependence on temperamre. Calculated 
at constant temperature, the characteristic peak in the relaxation we, which occurs in ordered 
solids when the producl of the average jump W e  and the Larmor frequency is approximately 
unity. is found to be broadened and shifled in frequency, particularly when the occupancy of 
the maps is high. The long-range diffusion constant is also calculated and used to evaluate the 
effect of atom-vacancy correlations. It is found that the Shih in the relaxation peak cannot be 
accounted for solely by these correlation effects and it is suggested that multiple hopping of the 
more rapidly diffusing spins is a contributory factor. 

The shifts have a profound effect on the temperature dependence of the relaxation rate when 
the distribution of jump rates is also dependent on temperature. The adjustments Lo the peak in 
the relaxation caused by the distribution are small when the temperature dependence is taken 
iutn account, showin% lhat experiments involving only the lemperature variation of the relaxatian 
are unlikely to be a sensitive method for detecting the presence of a jump-rate distribution. This 
aspect of the results of the computer model is illustrated by comparison with experimental data. 

1. Introduction 

Measurement of nuclear magnetic dipolar relaxation is an effective method for investigating 
hopping diffusion in crystalline solids and its success has been accompanied by the 
development of increasingly comprehensive theories of the relaxation rate applicable over 
a wide range of spin concentrations [l-31. This theoretical work has been reinforced by 
Monte Carlo simulation [4,5] and it is now possible to interpret in some detail experimental 
measurements of the relaxation rate for spins hopping on particular lattices. On the other 
hand, owing to the complexity of the problem and the wide diversity of types of disorder. 
the theory of relaxation in non-crystalline solids has advanced more slowly and theoretical 
models with equivalent levels of detail have yet to be developed. 

There is some evidence to show that in non-crystalline solids the structural disorder is, 
in itself, of minor importance to diffusion [6]. It is the variations of site and saddlepoint 
energies arising from the structural disorder that are of more consequence. Addressing 
the problem of diffusion in a real amorphous material requires not only consideration of 
distributions of both site and saddle energies but also the possibility of correlations between 
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the values of the energies at neighbouring sites. In addition there are important aspects 
of hopping diffusion associated with the co-ordination of the sites and the proportion of 
vacancies. In these circumstances it may not be possible to adopt a general approach. 
Consequently, throughout this paper a particular example of diffusion is assumed, namely, 
the diffusion of hydrogen in metal-hydrogen systems based on transition-metal-alloy glasses. 
Because of the low mass, there is the possibility that quantum corrections to classical banier 
crossing might be required at low temperatures. Gillan [7] has discussed the criterion for 
the transition from classical to quantum regimes in elemental metals containing interstitial 
hydrogen and concludes that the crossover temperature is typically about 200-250 K. It 
is difficult to assess whether quantum effects need to be taken into account in amorphous 
alloys and, in view of the fact that 200 K is well below the temperatures at which dipolar 
contributions have a principal role in the hydrogen nuclear magnetic relaxation, a firmly 
classical stance has been adopted in this paper, 

In amorphous alloys the hydrogen atoms occupy interstitial sites in a random array of 
metal atoms and the energy binding a hydrogen atom to a particular site depends not only on 
the structural disorder of the alloy but also on the variation in chemical species of the metal 
atoms surrounding the site. Neighbouring sites must have similar chemical compositions, 
causing there to be some short-range order in the sense that particular values of site energies 
may be grouped together over dimensions of the order of a few atom spacings. In the interest 
of simplicity the present paper deals only with a distribution of site energies and ignores 
spatial correlations of the site energies and any variation in saddle energy. 

The mobility of hydrogen in amorphous metal-hydrogen systems has been measured 
by several microscopic techniques including internal friction [S, 91 and neutron quasielastic 
scattering [IO]. The results of these experiments have been taken to indicate a distribution 
in the hopping rates of the hydrogen atoms, arising from the energy disorder. On the other 
hand, measurements of motion-dependent nuclear magnetic relaxation rates, particularly 
near the characteristic maxima, in many of these alloys can be interpreted by simple models 
not specifically related to the disorder [ I  1-13]. The main question that needs to be addressed 
is the extent to which nuclear magnetic relaxation rates are susceptible to the presence of a 
distribution of diffusion hopping rates. Previous work by some of the present authors [ 13,141 
based on Monte Carlo simulations has shown that in these circumstances modest changes 
in the relaxation do occur at low hydrogen concentrations. However, most experiments 
have been conducted with high levels of interstitial site occupancy and, in consequence, 
the present paper, as well as describing the computer model in more detail, extends the 
earlier work to high concentrations. The application of the results to metal-hydrogen 
systems, including the effect of the spatial correlations mentioned above, has been considered 
elsewhere [15,16]. The Monte Carlo method also complements some recent theoretical work 
on nuclear magnetic relaxation in amorphous hydrogen-bearing alloys [ 171. 

In theoretical models of ordered systems it is usual to obtain the relaxation rate as a 
function of or, where o is the Larmor frequency and 5 is the average interval between 
diffusion hops. The same perspective is adopted in the earlier parts of this paper, which 
describe the details of the simulation and the dependence of the relaxation on o for a 
fixed value of r. Since there is normally a one-to-one correspondence between 5 and 
temperature in ordered systems, it is easy to translate from this dependence to the variation 
of the relaxation time with temperature, as measured in experiments. However it is found 
in the present work that for disordered systems this translation is no longer trivial because 
of the possibility that the distribution of jump rates is also temperature dependent. The 
later parts of the paper draw parallels between the effect of the change in the distribution 
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on the relaxation rate and the long-range diffusion and describe a method of obtaining the 
temperature dependence of the relaxation rate. 

2. The Monte Carlo simulation 

2.1. Background theory 

Typically NMR experiments consist of measurements of the spin-lattice relaxation rate, 
either in the rotating frame (T;') or at large static fields (T;]), made with a view to 
obtaining the contribution to the rate that derives from the random fluctuations of the 
nuclear dipole coupling caused by the motion of the spin-bearing atoms. This paper will 
deal exclusively with the high-field rate. Even so, the method is equally applicable to TIP. 
In the semiclassical model usually adopted 1181, the dipolar relaxation rate for like spins is 
given by 

T;] = ;y4fi4z(2 + I ) [ J , ( ~ )  + ~ ~ ( 2 ~ ) i  (1) 

where the spectral densities, J, are the Fourier transforms of the time-dependent spin 
correlation functions, namely 

Jm(mw) = 2 G,(t)cos(mwt)dt m = I ,  2 (2) s 
and the G,(t) are thermal averages over the spherical harmonics of the spin co-ordinates. 

In earlier simulations of the dipolar relaxation rate for cubic systems [4,5] the time- 
dependent probability, P ( r i .  ~ j ,  t ) ,  that a pair of spins separated by ri at time zero is 
separated by r, after time t ,  was calculated. The correlation functions were then derived 
from this quantity. The aim of this complexity was to obtain the dependence of the relaxation 
rate on the product w? to a high accuracy. This is not a pressing problem in the present 
case and we note that the correlation functions can be obtained directly in a computer model 
if the thermal average is replaced by a sum over a set of tagged spins. With this in mind 
we have calculated the G,(t) from 

and i and j are two of the N interacting spins with time-dependent relative co-ordinates 
7, e, @. 

2.2. The disordered structure 

The computer model consists of 1000 ~ a p s  situated on a simple cubic lattice. Spins diffuse 
by making instantaneous hops to vacant near-neighbour traps. The determining factor of 
the relaxation is the jump rate, U, which is proportional to the probability that a spin can 
leave a given trap. This probability is assumed to be associated with the site in question, 
to be independent of the direction of the hop and to be proportional to the number of 
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vacant neighbouring sites. The exact form of the distribution of trap energies in disordered 
metal-hydride systems is not known but a Gaussian distribution has often been assumed 
[19,20]. In the present work, the energy density, f ( E ) ,  is chosen to be constant between 
two limits, E and E + A E ,  and zero beyond. In the computer algorithm it is more relevant 
to work in terms of jump rates so that the actual operational definition of the disorder was a 
distribution of jump rates f (u)  proportional to I /u .  Simple differentiation shows this form 
of f ( u )  arises if a simple Arrhenius relation between jump rate and energy exists and the 
pre-exponential factor is the same at all sites. It is also useful to define the effective width 
of the distribution in terms of W, which is the ratio of the greatest jump rate to the least. 
In the simulations W was given the values unity (no distribution), IO, 25 or 100. It should 
also be noted that absolute values of E / k T  and the jump rates are not required since the 
latter appear in the expression for the relaxation rate only through the product, OJT, 

In spite of the fact that spatial disorder is of minor consequence, it is useful to include 
it since doing so removes the dependence of the relaxation rate on the direction of the 
magnetic field with respect to the lattice. In the present case it was introduced during the 
calculation of the spin correlation function by shifting the spins from their lattice positions. 
The shifts were random in magnitude and direction and, once chosen for a given site, 
remained constant for the whole simulation. To prevent overlap the maximum shift was 
limited to f of a lattice spacing. The diffusing spins were not confined to the central 1000- 
site cube but could move beyond it in any direction, the only restriction being that periodic 
boundary conditions based on the central cube are observed. Computations were made at 
two spin-site ratios, namely 0.1 and 0.9, corresponding to 100 and 900 atoms, respectively. 

The fraction of time for which a spin fills the ith trap is q/Cq, where q = l/u; and 
U; is the effective jump rate for that trap. Thus if initially the traps are seeded according 
to their respective T; the total trap energy of the spins should then remain constant. In 
an actual test, although the total energy fluctuated, there was no discernible trend. On 
the other hand the time taken for 100 spins distributed randomly on the traps to reach 
thermal equilibrium was about 200 jumps. No significant difference was apparent between 
correlation functions calculated after this thermal relaxation time had elapsed and those 
calculated immediately from seedings in thermal equilibrium. Of course, the problem is 
not so acute at high concentration. Nevertheless, all simulations were performed with the 
correct thermal equilibrium at the start. 

2.3. The correlation functions 

The two spin correlation functions in equation (3) were calculated at the start of the 
simulation and, as each diffusion jump occurred, the change in these functions was evaluated. 
The correlation decays were smoothed by taking the average of 5 and 50 diffusion runs on 
the same lattice in the case of the 900- and 100-spin simulations respectively. 

In the computational algorithm the natural unit of time is the number of successive 
jumps. In an ordered system all the spins will jump, on average, in time T, the interval 
between jumps of each individual spin. Thus the interval between successive jumps in 
algorithm-converted real time is r / N ,  where N is the number of spins and r is 100 or 
900 successive jumps for the two systems considered. In a later part of the paper we have 
occasion to use a different jump rate but, for the present. we continue with this definition 
of real time. 

The Fourier transformation to the relaxation rate given in equation (2) cannot be made 
accurately by direct integration at values of WT very much greater than unity owing to the 
residual small fluctuations of the correlation decay with an average period somewhat less 
than the decay constant. In the crystalline case this may be remedied with the aid of known 
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analytic expressions for the long- and short-time limits [5]. This method is not possible in 
the present simulation, especially as the main effect of the disorder is to change the long- 
time limit of the correlation function. Our alternative is to fit the correlation with a sum of 
exponential functions by visual hial and error and subsequent minimization of the sum of the 
squares of the deviations. Fitting procedures involving up to three exponentials were handled 
in this way. The advantage is that the Fourier transform may be found analytically from 
the fitted functions. The amplitudes and the decay constants of the individual exponentials 
do not have any particular physical significance as several different sums will give very 
similar final smooth curves. 

3. Results of the simulation of the dipolar relaxation 

The simulation program calculates the time-dependent spin correlation functions, G I  (f) and 
Gz(f) from which the dipolar relaxation rate is obtained by Fourier transform. Following 
Torrey's work [l], it has generally been the custom to present the dipolar relaxation rate, 
T;', as a graph of OTT' against 05, since then the characteristic maximum near or = 1 is 
clearly demonstrated. The results of present simulations are shown in this way in figures 1 
and 2. The units of T;' are arbitrary computer units since our main concern is to show how 
T;' changes with the distribution. However, the maximum value is essentially determined 
by the initial, t = 0, magnitude of the correlation function, that is, the average dipolar 
coupling of a static m a y  of spins. The initial values of the correlation functions agree with 
those found by Crouch [12] in a simulation also based on a cubic lattice, and Crouch reports 
that his curves are consistent with earlier work [4]. 

0.01 0.1 I Q  IO 100 

m 
Figure 1. The deulated relaxation rate T;' in arbitrary computer units for a spin-site mtio 
of 0.1. The quantity oT;' is shown as a function of OT, where o is the Larmor frequency 
and r is the average interval between hops. The jumprate distribution is indicated by ill width 
parameter W. defined in the text as the ratio of the greatest to least jump probabilitia. Culves 
are shown for W = 1 (no distribution of jump rates) and W = 100. 

It is well established that the decay of the correlation is not exponential even when there 
is no spread in jump rate [l]. The general form of T;' found for zero spread, W = 1, is 
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0.1 
1w - 

in overall agreement with previous work [4.5] and has the correct asymptotic behaviour at 
both UJT >> 1 and WT << I ,  The effect of an increasing spread in jump rate is to cause both 
a change in shape of the correlation function and a general reduction in its rate of decay. 
The slower parts of the correlation decay are enhanced, the greatest change being observed 
at high concentrations and wide distributions. As a result the peak in the relaxation rate 
is both broadened and shifted. In the dilute case the maximum shifts from wr = 0.74 at 
W = 1 to WT = 0.4 at W = 100. In the concentrated case it occurs at UT = 0.63, 0.32 
and 0.18 for W = 1, 25 and 100 respectively. The width of the peak for the W = 100 
distribution, as measured by the ratio of wr at the higher and lower asymptotes, is 2.8 and 
1.3 times the width at zero spread for the 0.9 and 0.1 concentrations respectively. These 
widths are measured at the same relative fraction of the maximum relaxation rate. 

Even though these are large effects it is proper to raise the possibility that the simulation 
has not accounted for long decay times caused by slow-moving spins. In the simulations the 
maximum number of jumps was 1000 in the dilute system and between 20000 and 40000 
in the concentrated system. For the narrower distributions this is more than adequate to 
allow for a period in the simulation where the correlation function fluctuates about zero. 
However, the decay is not so complete for the 1%' = 100 distribution at the 0.9 atom-site 
ratio and a small positive fraction of about 0.002 of the initial value remains. Although 
this amplitude would appear to be negligible it is worth considering what contribution to 
the relaxation rate curves it could make if the decay time were very long. 

In the high-frequency l i t ,  where the period of the oscillations of the cosine term in 
the Fourier transform is much shorter than the correlation decay constant, the relaxation rate 
is proportional to the first time derivative of the correlation function. An estimate of the 
error involved in fitting to this slope from a comparison of separate simulations indicates a 
probable error of less than 5%. At the low-frequency limit the relaxation rate is proportional 
to the area under the correlation decay since the sinusoidal term may be treated as a constant. 
In the example mentioned above, the greatest decay constant found from the simulation is 
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- lor, so the missing area in the tail of the correlation decay is about 2% of the whole. 
On the other hand, if it is assumed that 5 relates to the motion of the most rapidly diffusing 
spins rather than the mean, the longest possible decay constant is 100r. The missing area 
would then be increased by a factor of 10, resulting in the possibility of a 20% increase 
in the relaxation rate at low mr and in the width of the peak. We regard an error of this 
magnitude as acceptable in the context of the present paper. The true error is likely to be 
considerably smaller. 

Interestingly these results reveal that the presence of a jump-rate distribution is clearly 
discernible only in concentrated samples. Examination of the computer output shows that 
the pattern of jumps is different in dilute and concentrated systems. In the former the spins 
principally occupy the deeper traps, which are relatively widely separated in comparison 
with the nearest-neighbour distance. Diffusion takes place by means of a spin leaving a 
trap and hopping through several shallower traps before meeting another deep one. The 
total displacement is of the order of the average separation and, consequently, several hops 
are required in general for the dipolar coupling of a particular spin to be lost. The process 
involves a number of very different trap depths with the result that the divergence from the 
average of the time taken is reduced. On the other hand, in the concentrated system each 
spin becomes uncorrelated in one jump. The spins no longer sample several different jump 
rates while becoming uncorrelated and this is reflected in the relatively broader relaxation 
curve. 

Even though averaging over a combination of hops does not apply, concentrated systems 
are not free from averaging effects. A different sort of averaging occurs because of the 
spatial proximity of traps of different depth and the pair-like nature of the dipolar coupling. 
A large conhibution to the total spin correlation function originates from pairs of spins 
with different jump rates and. since pair correlations are destroyed when either entity of 
the pair jumps, the full effect of the deeper traps is attenuated. This averaging between the 
time constants of ‘slow’ and ‘fast’ spins cannot be seen in the hopping process but can be 
tested by the use of approximate correlation functions in the following way. Only a brief 
description is given. 

If the dipolar coupling involved independent spins rather than pairs, a reasonable 
approximation to the total correlation functions could be obtained by first assuming that 
the auto-correlation functions of the individual spins are exponentials and then integrating 
over the distribution of jump rates, g(u). That is, the correlation functions would have the 
form 

where G(0) is the initial value. This integral can be dealt with directly within the confines 
of the present model by taking the Fourier transform to obtain the relaxation rate. The 
result, when g ( u )  corresponds to the W = 100 distribution, is a relaxation curve similar 
to the W = 100 curve in figure 2 but having about twice the width, as defined in the way 
indicated above. 

This version of the correlation function, usually in a form that gives the relaxation rate 
directly, has been used on several occasions to analyse experimental data [21-23]. It is 
not the best approximation since, in the case of pair correlations, the single integral should 
be replaced by a convolution over pairs. The convolution cannot be evaluated so readily 
since it involves consideration of the spatial distribution of the pairs. We have been able 
to obtain an approximate numerical solution corresponding to W = 100 and the random 
spatial distribution of the present model. The rate constants in the convolution are now 
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the averages for the spin pairs and the distribution. g(u) ,  is modified. This results in a 
relaxation curve with a width more consistent with the outcome of the simulation. The 
method is satisfactory only when the spin-site ratio is of the order of unity, and attempts 
to deal with the dilute case by modifying g(u) to include only the deeper traps results in a 
relaxation curve of different shape from that found by computer simulation. 

4. Relation to the diffusivity 

The disorder not only causes a change in shape of the spin correlation function but also 
a general increase of its decay constant in relation to the average jump rate, that is, a 
shift in the peak in the relaxation curves towards lower values of W T .  In ordered systems 
such shifts of the peak, which occur as the concentration increases, are ascribed to atom- 
vacancy correlations, particularly the increased probability at finite concentrations of an 
atom retracing the path of its preceding jump. An alternative way of examining these 
correlations is through the long-range diffusion. For the random walk of a single atom the 
long-range diffusion constant, D, is defined through the relation 

(rZ} = na2 = a 2 t / s  = 6Dt (6) 

where (rZ) is the mean square distance jumped in time t ,  n the number of jumps in the 
same time, a the mean jump length and 5 the mean residence time on a site. At this 
concentration in the present model each hop is independent of the previous one since the 
site energies are independent variables. To account for the atom-vacancy correlations at 
larger concentrations it is usual to include a further concentration-dependent factor in this 
equation. 

At this paint a distinction must be drawn between ordered and disordered systems. When 
there is no site disorder the probabilities of a forward and backward jump are equal. This 
is not so in the disordered case, where the differences in site energy and the accompanying 
jump-rate distribution destroy this equality. For example, there is a greater likelihood of 
a return to the original position when an atom hops from a deep trap to a shallow one 
than there is for the reverse process. Thus the correlation factor is likely to depend on the 
jump-rate dishibution as well as the concenhation, c. In the present model, where there 
is a definite choice of distribution frequency, this may be accommodated by the inclusion 
of the parameter W in the functional form of the correlation factor. That is, the diffusion 
constant may be written 

6 0  = f (c, W)a2/T = f (c. l )a2 /rd .  (7) 

Here f (c .  W )  is the coefficient that denotes the reduction in the diffusion constant caused 
by the correlations. The second equality in the expression has been included because we 
find it convenient to define a diffusion-related mean jump interval, ~ d ,  which can be used 
to link the diffusion constant and the relaxation rate. In this equation f(c, I) is the value 
of f(c, W )  when there is no energy distribution. 

In order to determine D, the total mean square displacement (R2)  = N(r2) of the spins 
was calculated in a series of simulations equivalent to those that gave the relaxation rate. For 
independently hopping spins the mean square displacement in n successive computer hops 
is naZ and this value was found to within 1% in the dilute system, c = 0.1, whether a jump- 
rate distribution was present or not. We therefore conclude that, at this low concentration, 



NMR in disordered solids: a Monte Carlo study 3007 

f ( c ,  W) is unity and successive jumps are essentially uncorrelated. A different result was 
found for the concentrated system, c = 0.9. As shown in figure 3, (R’) becomes linear in 
time after an initial transient of the order of r. Even in the case where there is no energy 
disorder the slope of the linear part falls below the value applicable to independent hops. At 
long times the reduction is about 30% for W = 1 and ascribing this reduction to the presence 
of the correlation effects leads to a magnitude for f(c, 1) of 0.7, which is consistent with 
the results of  calculations of f(c, 1) for nearest-neighbour jumps on simple cubic lattices 
[24,25]. The behaviour at shorter times, of the order of r ,  is more germane to the relaxation. 
Since (R2) is not linear in time over this period it is not possible to give a constant value 
for f ( c ,  1). Redefining it as ( R z ) / n a 2  measured at f = T gives f(c, 1) = 0.88. Figure 3 
also shows that f(c. W) decreases as the width of the distribution increases. In fact it is 
possible to bring the curves in  the figure into close coincidence at times greater than r by 
adjusting the time scale for each curve by a suitable factor. The scaling factor is 0.49 for 
the W = 100 curve compared with the curve representing no distribution. Again due to 
the slightly different shapes of the curves i n  the non-linear region this factor is somewhat 
larger, about 0.53, for coincidence at times of the order of 5 .  

6w0 

4oM) 

ZwO 

JlUnpS 

Figure 3. The total mean squm distance, (R’), travelled by all spins initially in the base cube 
is shown as a function of the number n of hops. The spin-site ratio IS 0.9. ( R Z )  is essentially 
linear in n after an intial period of the order of the avenge interval r between jumps. The figure 
shows that the diffusivity falls as the width 1V ofthe jump-rate distribution increases. The value 
of W is given against each curve in the figure. The reduction is due to atom-vacancy correlation 
effects, which depend not only on the concentration of the spins but also on the distribution. 

In general agreement with the results for cubic lattices [4], the maxima in the relaxation 
curves for W = 1 occur at 05 = 0.74 and wr = 0.63 in the dilute and concentrated systems 
respectively. The ratio of these values is 0.85, showing that the shift in the maximum 
between these two systems can be ascribed to the atom-vacancy correlations. In spite of 
some difference in shape, the overall decay of the spin correlation function near r is the 
same in each case for a given mean square displacement of the spins. A new feature of the 
simulations is that this is apparently no longer true when disorder is present. The equivalent 
of comparing spin correlation functions at equal root mean square displacements is to scale 
5 according to equation (7) using the data of figure 3. That is, p replaces r ,  and the result 
is shown in a new plot of the relaxation curves for c = 0.9 in figure 4. Whether the scaling 
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is made at long or short times, shifts in the relaxation maxima towards low os persist. The 
scaling is sufficient to bring only the asymptotes at large or into near coincidence. In terms 
of the correlation functions this implies that their initial decays are similar, but overall there 
remains a tendency for the spin correlation to decrease more slowly as W increases. 

@T,-l i 

F i i r e  4. The relaxation curves of Rgure 2, now shown as dotted curves, are plotted as a 
hnction of  oy, where rd is m awmge jnmp ate derived from the long-mge diffusion and 
takes into account the effect of the atom-vncancy correlations. The solid C U N ~  shows a typical 
modification to the relaxation curves if W is temperature dependent The conditions under which 
this curve has been derived are explained in the text. 

1 :  

0.1 

In ordered materials the decay constant of the correlation function is approximately 
equal to the average interval between hops to within a factor of two and the differences 
that exist between dilute and concentrated spin systems can be reconciled with the effects 
of atom-vacancy correlations [4]. The relatively longer decays when disorder is present 
cannot be accounted for in the same way and appear to be intrinsic to the disordered state. 
It is difficult to establish the reason for the reduced rate from the simulation hut it seems 
likely that it arises from multiple hopping. Because of the short-range nature of the dipolar 
coupling the contribution of a given spin to the correlation function in a concentrated system 
essentially disappears when that spin hops. The initial decay of the spin correlation tends 
to take place through the movement of those spins with the greater probability of making a 
jump. They may make further jumps, which increase the mean square displacement without 
adding significantly to the diminution of the correlation, in the average time required for a 
single hop of a spin with a low probability of hopping. Thus in relation to the diffusion the 
decay of the spin correlation is biased towards the movement of those spins with low jump 
rates. 

c;.. 
I,.. si.. 

- 

5. Dependence on temperature 

Most experiments explore the temperahue dependence of the relaxation rate and the 
simulated relaxation curves may be used to interpret such measurements if the distribution of 
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jump rates is known to be independent of temperature. Unfortunately, a constant distribution 
of this type is unusual. A more typical example, which can be discussed in the framework 
of the present model, is one in which the energy disorder is independent of temperature and, 
because of the activated nature of the diffusion, the jump-rate distribution is temperature 
dependent. Retaining the condition that all hops have the same preexponential factor, the 
parameter W has the form 

(8) 
where E1 and E2 are the extremes of the energy distribution and r1 and t 2  are the 
corresponding jump intervals. One way of dealing with this equation is to replace 
temperature by some other variable related to the diffusion and clearly the most 
straightforward substitution is to use a replacement with a temperature variation similar 
to the right-hand side. For example, if td is given by 

td = toexp(E,/kT) (9) 

W = t 2 / t l  = exp[(Ez - E l ) / k T ]  = exp(AE/kT) 

where Ea is a temperature-independent activation energy 

In W = (AE/E,)In(rd/ro). (10) 

It is then possible to obtain W as a function of rd independently of temperature for a given 
choice of AE/E, and ro. 

Equation (9) is not strictly obeyed in the present model. As mentioned earlier the jump 
rate distribution is skewed with respect to the energy distribution by the factor l /u,  so there 
is a temperature-dependent shift of the mean jump rate. The effect has already been noted 
in relation to random walk on a lattice with site energy disorder [26]. In that case the 
mean jump interval increases faster than exp(E/kT), where E is the average site energy, 
and the diffusion constant has a corresponding divergence. In addition, particularly at high 
concentrations, there is the effect of the atom-vacancy correlations, which also contribute 
to the temperature dependence of rd ,  It is therefore necessary to appeal to experiment in 
order to obtain justification for the use of equation (9). Typical relaxation measurements 
occupy the temperature range 20M50 K and the aim is to show that the mean interval 
departs little from the Arrhenius form over this restricted range. For example, internal 
friction measurements on hydrogen-loaded metallic glasses are consistent with a spread of 
activation energies of the order of 0.08 eV about a mean of :-+ eV [8,9]. On the basis of 
these data, W changes by a factor of 10 and the mean jump interval departs by less than 
1% from an Arrhenius dependence over the above temperature range. As indicated above 
the effective activation energy of the mean jump interval is different from the mean energy 
of the distribution. A similar argument holds for the effect of the atom-vacancy correlation 
and it is possible to infer that errors deriving from the assumed form of equation (9) are 
less than those incurred in typical relaxation experiments. 

Given that equation (9) is a satisfactory form for td equation (IO) can be used to obtain 
a curve of T;' against td, which includes compensation for the change in W. The output of 
the computer simulation is essentially a family of curves connecting T;', w and rd so that 
the desired curve is the locus through this family that gives T;' as a function of td while 
simultaneously satisfying equation (8). Rather than carry out the large number of curves 
required for a smooth locus we have interpolated between successive curves in figure 4. 
In keeping with the logarithmic relation between T;' and td. interpolation was carried out 
according to the following rule: 

In(s/sz)/ln(sl/sz) = M w / W d /  In(WIIW2) (11) 
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where s is the relaxation rate T;' and the subscripts 1, 2 refer to two successive curves 
obtained from the simulation. The locus through the curves corresponding to c = 0.9 
calculated on this basis with A E I E  = 0.3 is shown as a solid line in figure 4. The value of 
ro was chosen to give U' = 10 on the low-frequency side of the peak and W = 100 when 

The extent of the data from the simulation imposes a limitation on the qualitative nature 
of the loci that can be constructed. In order to achieve loci that extend over the greater 
part of the ord range of figure 4 i t  is necessary to restrict W to less than about 25 on the 
low-frequency side of the peak and A E I E  to less than 0.5. In order to improve this range, 
it would be necessary to carry out the simulation at much higher values of W .  Within this 
restriction it turns out that all the loci generated with A E I E  in the range 0.2-0.5 have a 
shape similar to the curve for W = 1. This is a consequence of the fact that the dotted 
curves in figure 4 are almost coincident at large or, which in turn arises from the shifts of 
the relaxation curves ascribed to the effects of multiple hops. In principle values for E. may 
be obtained by comparing these loci with experimental measurements of the temperature 
variation of the relaxation rate, 

It is also possible to deal with the curves of figure 2 in the same way with similar 
results. Because of the general shift of the curves towards low or the peaks of the loci 
that now have or as a variable tend to have a narrower width than those described above. 
Consequently. applied to experimental measurements of the relaxation rate, each of the loci 
generated this way give a value for the activation energy of the average jump interval lower 
than the equivalent E,. The difference in activation energy of r .  and T reflects the change 
in the atom-vacancy correlations caused by the increase in N that occurs as the temperature 
decreases. 

The similarity between the loci that include the temperature dependence of W and the 
relaxation curve for W = 1 results in a predicted temperature dependence for the relaxation 
rate almost symmetrical about the peak rate. That is, the relation ln(T;') m &E,/kT 
is approximately true well above and below the peak, respectively. This result is quite 
different from theoretical predictions of relaxation rates in amorphous alloys [I71 in which 
it turns out that the temperature dependence on the low-temperature side of the peak is 
generally smaller. It is possible to achieve a similar temperature dependence, but with a 
smaller difference in variation above and below the peak, by making the simulated relaxation 
curves coincide at their peak values before constructing the loci. A possible explanation of 
the difference between simulation and theory is that the latter does not account for the shifts 
found in the simulations. The theoretical predictions do not agree in detail with the outcome 
of measurements on disordered alloys, whereas we will show below that it is possible to 
obtain agreement between the simulated and experimental relaxation rates providing that 
more than one relaxation channel is assumed to operate at low temperatures. 

Wr.3 IS about 30. 

6. Comparison with experiment 

The inference that can be drawn from the simulation, namely that the temperature variation 
of the relaxation rate is not sensitive to the distribution of jump rates, offers an explanation 
of the fact that in many experiments it is possible to fit the data to standard relaxation 
models over the greater part of the range of temperature measured [ll-131. The changes in 
activation energy sometimes reported [ I l l  appear to be genuine and not the result of mis- 
match with theory, since a single value is found in the vicinity of the peak relaxation rate, A 
particular difficulty with the experiments is that departures from the theoretical variation of 
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Figure 5. The solid line shows the results of the computer model for A E I E  = 0.3 compared 
with the experimental values of the hydrogen nuclear magnetic relaxation time. 71. in an 
Ni)gTifiHr% metallic glass as given by Crouch 1121. A Koninga conmibution to the relaxation 
rate. Ti', given by T1.T = 12 s K has been subfracted from the raw data. The computer 
curve has been adjusted to give coincidence at the minimum in Tr and by choosing the average 
activation energy E ,  to be 0.26 eV. 

the relaxation rate are observed at low temperatures. Such departures in crystalline metal- 
hydrogen systems are well established to be due to other relaxation processes, typically the 
interaction of the nuclear and conduction electron spins [27]. Unfortunately in amorphous 
alloys the experimental data are often not extensive enough to provide an unequivocal 
identification and this has led to different interpretations of the data. For example, data 
on amorphous nickel-titanium alloys [22] have been analysed along the lines suggested by 
equation (3, whereas it has been pointed out [13] that an interpretation without recourse to 
a distribution of jump rates is possibIe if other relaxation channels are taken into account. 
In other cases distributions have been assumed to account for minor deviations from simple 
theory [21]. 

In order to demonstrate the relation between the simulation and experiment we have 
chosen to fit computer-generated loci to the measured dipolar relaxation of interstitial 
hydrogen in an Ni3STi65 alloy glass. In view of the likely presence of second relaxation 
channels the experimental data in figure 5 have been corrected to allow for a contribution to 
the relaxation rate from the conduction electrons. The curve in figure 5 has been obtained 
from the solid curve in figure 4 by adjusting Ea and bringing the computer-generated and 
experimental minimum relaxation times into coincidence. The activation energy comes out 
to be 0.26 eV and A E  is 0.078 eV. If the correction for the electronic contribution is 
not made, the same simulated curve with the same value of E, still fits the data near the 
minimum but the experimental points fall below the calculated curve at temperatures less 
than 250 K. As indicated above, the shape of the generated curve is not very sensitive to 
the value of A E  and it is possible to fit the data equally well with A E  up to 0.1 1 eV and 
E, increasing to 0.28 eV. Some indication that the locus corresponding to the solid line 
in figure 4 is similar to the computer-generated curve for W = 1 can be obtained from 
the result that the best fit of the latter to the same set of data gives E ,  = 0.25 eV. The 
general agreement between the computer calculation and earlier relaxation-rate theories can 



be demonstrated by noting that fitting Torrey's [l] calculated relaxation curves to the same 
data also gives 0.26 eV. 

The reason that similar parameters fit the corrected and uncorrected data arises from 
the small adjustment necessary to the vicinity of the minimum relaxation time. This is 
only about 20%. Equivalent fits can be made to all the data of G in hydrogen-loaded 
amorphous alloys obtained by Crouch 1121 and Wolney Filho [28] and it seems reasonable 
to conclude that the simulated relaxation rates along with a secondary contribution rather 
than an asymmetric temperature variation can provide an explanation of the experimental 
observations. 

Finally it should be noted that the implication of the computer simulations is that 
the best method of detecting the presence of a distribution of jump rates is to measure 
the frequency dependence of the rate at a fixed temperature. Unfortunately the range 
of frequency required makes such an experiment technically difficult and it is probably 
for this reason that measurements are carried out with temperature as the variable. It 
may be necessary to adopt a different approach and, in this connection, we note that the 
correlation functions that govern TI and the spin-locked rotating-frame relaxation time, Tip. 
are similar in form. The principal differences, which make measurements of TIP particularly 
advantageous, are that the radio-frequency (RF) field strength replaces the Larmor frequency 
and experiments over a wide range of RF field strengths do appear to be technically feasible. 
In fact we are currently engaged in such measurements and intend to interpret them by means 
of a suitable modified version of the present simulations. 
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